Diastereo- and Enantioselective Alkylation of α-Imino Esters with Enol Silanes Catalyzed by (R)-Tol-BINAP-CuClO₄·(MeCN)₂

Dana Ferraris, Brandon Young, Christopher Cox, William J. Drury III, Travis Dudding, and Thomas Lectka*

Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 Received June 8, 1998

The past few years have witnessed a profusion of highly efficient, catalytic, enantio- and diastereoselective alkylations of carbonyl compounds.¹ At the present time, the alkylation of the imino functional group presents a timely challenge in asymmetric catalysis, and recent work has focused on enol silanes, silvl ketene acetals, and TMSCN as carbon-based nucleophiles.² We recently reported a means to alkylate α -imino ester **1** in up to 98% ee with enol silanes using chiral catalytic late-transition-metal phosphine complexes based on Ag(I), Cu(I), Ni(II), and Pd(II) (eq 1, R' = H).³ The best results were obtained with the easy-toprepare catalyst (*R*)-Tol-BINAP-CuClO₄·(MeCN)₂. In this paper, we extend the utility of our reaction to include diastereo- and enantioselective variants that yield precursors for a number of pharmacologically active classes of compounds.⁴ Regardless of the geometry of the enol silane, in many cases, excellent anti diastereoselectivity as well as enantioselectivity (up to 99% ee) can be obtained in the reaction (eq 1).⁵ In fact, the precise nature of the chiral phosphines we employ is responsible for the diastereoselectivity, as certain achiral bis(triphenylphosphine)-Cu(I) complexes lead to equal amounts of anti and syn products.

Initial screening focused on the reaction of Z-enol silane **2a** $(\mathbf{R}' = \mathbf{M}\mathbf{e})^6$ with α -imino ester **1**.⁷ A pale straw yellow

(2) (a) Sigman, M. S.; Jacobsen, E. N. J. Am. Chem. Soc. 1998, 120, 4901. (b) Hagiwara, E.; Fujii, A.; Sodeoka, M. J. Am. Chem. Soc. 1998, 120, 2474.
(c) Kobayashi, S.; Ishitani, H.; Ueno, M. J. Am. Chem. Soc. 1998, 120, 431. (d) Kobayashi, S.; Nagayama, S. J. Am. Chem. Soc. 1997, 119, 10049. (e) Ishitani, H.; Ueno, M.; Kobayashi, S. J. Am. Chem. Soc. 1997, 119, 7153.

(3) Ferraris, D.; Young, B.; Dudding, T.; Lectka, T. J. Am. Chem. Soc. 1998, 120, 4548.

(5) Mukaiyama and co-workers also note predominant anti addition to aldehydes regardless of double-bond geometry in the presence of a Lewis acid catalyst: Mukaiyama, T.; Kobayashi, S.; Murakami, M. Chem. Lett. 1985. 447

solution of the active catalyst **3b** can be made simply by mixing 5 mol % of CuClO₄ · (MeCN)₄⁸ with 5.5 mol % of commercially available (R)- or (S)-Tol-BINAP in CH₂Cl₂. This catalyst solution is stirred for 30 min, at which time 1 equiv of imino ester 1 is added at room temperature. As part of our standard procedure, slow addition of a CH₂Cl₂ solution of 1.1 equiv of 2a over 1 h to the catalyst-imine mixture at 0 °C afforded product 4a with good yield (86%), excellent ee (98%), and diastereoselection (anti/syn = 25:1; Table 1, entry 1). The yield, enantioselectivity, and diastereoselectivity all decreased slightly with the use of (S)-BINAP-CuClO₄·(MeCN)₂ **3a**, an unexpected result that mirrors the recent findings of Carreira in a Cu(II) phosphinecatalyzed asymmetric aldol reaction.⁹ Not surprisingly, the enol silane 2b¹⁰ reacted under these conditions to yield 75% of 4b in 95% ee and a 25:1 anti/syn ratio (entry 2). The absolute and relative stereochemistries of 4a and 4b were determined by diastereoselective reduction/cyclization to yield an intermediate lactone which was converted to known compound 5 (eq 2).¹¹ This methodology provides a convenient way to synthesize asymmetrically trisubstituted lactones that are building blocks for many natural products.¹²

We were interested in whether an *E*-enol silane could reverse the stereochemistry at the β -carbon leading to the syn product. Simple *E*-enol silanes, however, are difficult to synthesize isomerically pure without laborious purification.¹³ One way to approach the problem of diastereoselective enolization is to enforce *E*-geometry by using a cyclic framework. The cyclic enol silane 2e affords a 20/1 anti/ syn ratio of product **4e** in >99% ee (entry 5).¹⁴ Enol silane **2f**, derived from the corresponding known ketone,¹⁵ can be viewed as a masked equivalent of E-enol silane **2b**. The silyl tetralone 2f afforded the product 4f with anti stereochemistry in 99% ee at -78 °C (15:1 anti/syn, entry 6, Table 1).¹⁶ We found that higher reaction temperatures drastically eroded the enantio- and diastereoselectivity of 4f due to an appreciable nonselective background rate between 1 and 2f. Other cyclic enol silanes yielded somewhat lower enantioand diastereoselectivities. For example, the enol silane 2c

 J. E.; Lampe, J. J. Org. Chem. 1980, 45, 1066.
(7) Tschaen, D. H.; Turos, E.; Weinreb, S. M. J. Org. Chem. 1984, 49, 5058

(8) For preparation of Cu(ClO₄)·(MeCN)₄, see: Kubas, G. J. *Inorganic Synthesis*; Shriver, D. F., Ed.; Plenum: New York, 1979; Vol. XIX, p 90. (9) Kruger, J.; Carreira, E. M. J. Am. Chem. Soc. 1998, 120, 837

(10) Schumacher, R.; Reissig, H.-U. Liebigs Ann. Recueil 1997, 521

(11) Experimental details are reported in the Supporting Information.

(a) Barluenga, J.; Viado, A. L.; Aguilar, E.; Fustero, S.; Olano, B. J. Org. Chem. 1993, 58, 5972.
(b) Gair, S.; Jackson, R. F. W.; Brown, P. A. Tetrahedron Lett. 1997, 38, 3059.

(12) Jackson, R. F. W.; Rettie, A. B.; Wood, A.; Wythes, M. J. J. Chem. Soc., Perkin Trans. 1 1994, 1719.

(13) Heathcock, C. H.; Davidsen, S. K.; Hug, K. T.; Flippin, L. A. J. Org. Chem. 1986, 51, 3027.

(14) The absolute and relative stereochemistry of product (2.5,1'R)-4e was determined by X-ray crystallography as shown in the Supporting Information. Stereoregularity was inferred for the cyclic products **4c**, **4d**, and **4f**.

(15) Barcza, S.; Hoffman, C. W. Tetrahedron 1975, 31, 2363 (16) For desilylation of 4f, see: Hayes, M. A. In Comprehensive Organic

Functional Group Transformations; Katritzky, A. R., Meth-Cohn, O., Rees, C. W., Eds.; Pergamon: New York, 1995; Vol. 1, p 447.

^{(1) (}a) Evans, D. A.; MacMillan, D. W. C.; Campos, K. R. J. Am. Chem. Soc. 1997, 119, 10859. (b) Yangisawa, A.; Matsumoto, Y.; Nakashima, H.; Asakawa, K.; Yamamoto, H. J. Am. Chem. Soc. 1997, 119, 9319. (c) Evans,
D. A.; Murry, J. A.; Kozlowski, M. C. J. Am. Chem. Soc. 1996, 118, 5814. (d) Carreira, E. M.; Singer, R. A.; Lee, W. J. Am. Chem. Soc. 1994, 116, 8837

⁽⁴⁾ Oxo- α -amino acids are a class of kynurenine-3-hydroxylase inhibitors: (a) Rover, S.; Cesura, A. M.; Huguenin, P.; Kettler, R.; Šzente, A. J. Med. Chem. **1997**, 40, 4378. (b) Pellicciari, R.; Natalini, B.; Costantino, G.; Mohmoud, M. R.; Mattoli, L.; Sadeghour, B. M.; Moroni, F.; Chiarugi, A.; Carpendo, R. *J. Med. Chem.* **1994**, *37*, 647. (c) Nikkomycins and neopolyoxins are a potent class of antifungals and antibiotics: Barrett, A. G. M.; Lebold, S. A. *J. Org. Chem.* **1991**, *56*, 4875. (d) Helms, G. L.; Moore, R. E.; Niemczura, W. P.; Patterson, G. M. L.; Tomer, K. B.; Gross, M. L. *J. Org.* Chem. 1988, 53, 1298.

⁽⁶⁾ Heathcock, C. H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn,

Table 1. Diastereoselective Alkylations of α-Imino Ester 1

^{*a*} Reactions carried out at 0 °C \rightarrow rt. ^{*b*} Reactions carried out at -78 °C. ^{*c*} %ee determined by Chiralcel OD chiral HPLC column. ^{*d*} %ee determined by chiral shift reagent (+)-Pr(hfc)₃.

derived from cyclohexanone affords product **4c** in 71% yield (88% ee, 11:1 anti/syn, entry 3) with catalyst **3b**. Once again, both the enantioselectivity and diastereoselectivity diminished slightly with the use of catalyst **3a** (78% ee, 7:1 anti/syn ratio). The cycloheptanone-derived enol silane **2d** led to a lower ee and anti/syn ratio (entry 4). Not surprisingly, the aliphatic enol silane **2g** led to similar diastereoselectivity and enantioselectivity regardless of the purity of enol silane (entry 7).

Intriguing reports on the intermediacy of Pd(II)- and Cu-(II)-based enolates in catalytic asymmetric imine additions and aldol reactions^{2b,9} prompted us to examine whether they might be involved in our system. Treatment of a 1 mM solution of enol silane **2h** ($\ddot{R} = Ph$, R' = H) in CD_2Cl_2 with 1 equiv of catalyst produced no discernible change in the ¹³C and ¹H NMR spectra of the enolate over the course of 2 days, whereas previously we had demonstrated a chelatebased interaction between imino ester 1 and the catalyst 3b by IR spectroscopy.³ Thus, our results are consistent with the catalyst **3b** working as a classical Lewis acid. We were also aware of the potential ease of interconversion between Cu(I) and Cu(II).¹⁷ To our surprise, a similar, although somewhat less effective, catalyst could also be generated by mixing $Cu(ClO_4)_2$ with (R)- or (S)-BINAP in THF. This catalyst afforded product **4h** (R = Ph, R' = H) in 85% ee under the conditions of our screen. In addition, a major ligand-based byproduct of this reaction was identified as the bis(phosphine) oxide of BINAP (BINAPO).¹⁸ To determine the source of oxygen in this phosphine oxidation, $Cu(ClO_4)_2$

Figure 1. Crystal structure of (*S*)-BINAP–CuClO₄·(MeCN)₂ (50% ellipsoids).

was added to (*S*)-BINAP in a THF solution to which a slight excess of water enriched in $H_2^{18}O$ had been added. Workup and MS analysis of the BINAPO byproduct showed corresponding isotopic incorporation of ¹⁸O into the phosphine oxide moiety,¹⁹ implying that a small amount of adventitious water is the oxygen source when BINAP is oxidized by Cu-(ClO₄)₂.²⁰ Consequently, the use of Cu(I)– or Cu(II)– BINAPO complexes in the alkylation of **1** led to racemic products **4h** (R = Ph, R' = H), implying that only Cu(I)– BINAP is the active catalyst in our system, albeit present in reduced amounts when a Cu(II) salt is employed as a starting material.

The UV spectra of catalysts derived from either Cu(I) or Cu(II) salts appeared virtually identical, with features characteristic of Cu(I), including the lack of d-d absorption bands indicative of Cu(II).¹⁷ Similarly, NMR spectra showed none of the expected paramagnetic broadening associated with the use of Cu(II), even when $Cu(ClO_4)_2$ was the starting copper salt. The catalyst's composition was determined by an X-ray crystal structure of the catalyst (S)-BINAP- $CuClO_4$ (MeCN)₂ (Figure 1), showing conclusively that a tetrahedral complex of Cu(I) is involved in our reactions.²¹ Some interesting structural features of the crystal include one of the largest bite angles $(P-Cu-P = 98.98^{\circ})$ of any BINAP-M complex,²² apparently due to its approximate tetrahedral geometry. When single crystals of catalyst 3a were redissolved in THF or CH₂Cl₂, a fully competent catalyst solution was formed.

Acknowledgment. T.L. thanks the American Cancer Society and the Petroleum Research Fund for financial support. The authors thank Dr. Victor G. Young, Jr., director of the X-ray Crystallographic Laboratory at the University of Minnesota, for obtaining the crystal structures of **3a** and **4e**.

Supporting Information Available: General procedures for the conduct of catalytic reactions, spectroscopic details for all new compounds, and proof of absolute configuration (37 pages).

JO981079H

⁽¹⁷⁾ Hathaway, B. J. In *Comprehensive Coordination Chemistry*; Wilkinson, G., Fillard, R. D., McCleverty, J. A., Eds.; Pergamon: New York, 1987; Vol. 5.

⁽¹⁸⁾ For the synthesis and characterization of BINAPO see: Tayaka, H.; Mashima, K.; Koyano, K.; Yagi, M.; Kumobayashi, H.; Taketomi, T.; Akutagawa, S.; Noyori, R. *J. Org. Chem.* **1986**, *51*, 629.

⁽¹⁹⁾ Mass spectral analysis indicated an isotopic enrichment at the M \pm 2 and M \pm 4 peaks of BINAPO.

 ⁽²⁰⁾ Phosphine oxidation by Cu(SO₄)₂ is precedented: Berners-Price, S. J.; Johnson, R. K.; Mirabelli, C. K.; Faucette, L. F.; McCabe, F. L.; Sadler, P. J. *Inorg. Chem.* **1987**, *26*, 3383.

⁽²¹⁾ Crystals of **3a** were obtained by slow evaporation of THF. Crystal data for **3a**: monoclinic, *C*2; *a* = 39.263(2), *b* = 10.8841(4), *c* = 11.0147 Å; V = 4705.4(3) Å³; *Z* = 4; *d*_{calcd} = 1.225 Mg/m³; *F*(000) = 1792; μ (Mo K α) = 0.120 mm⁻¹; μ (Mo K α) = 0.710 73 Å; 17 316 reflections measured, 8125 observed; (*I* > 2 σ (*I*)) = 6800; 107 variables; *R* = 0.0570, *R*_W = 0.1015, GOF = 1.045.

⁽²²⁾ Tayaka, H.; Ohta, T.; Mashima, K.; Noyori, R. Pure Appl. Chem. 1990, 62, 1135.